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Abstract—Poisson brackets are presented for single-pressure ideal multiphase hydrodynamic and
electrohydrodynamic models of fluids and plasmas. Stationary multiphase flows are shown to be
cntical points of the sum of the energy and additional conservation laws associated with the kernels
of these Poisson brackets. The constraint of a common pressure for the phases is shown to preclude
Lyapunov stability for these stationary flows.

1. INTRODUCTION

Multiphase flow involves interpenetration of various material species. Hydrodynamic models
describing such systems raise many questions, such as well posedness and stability, which
can be addressed in the context of a Hamiltonian formulation. Such a formulation is the
purpose of this paper.

Practical models of multiphase flow are typically derived by taking averages with
respect to time, space, or statistically over microscopic domains to obtain macroscopic fluid
descriptions. This averaging procedure is a rather subtle process, which has been given
detailed description in Ishii (1975) and Nigmatulin (1979), resulting in a by now standard,
single-pressure fluid description of multiphase flow.

An open problem about the basic single-pressure fluid model without dissipation
concerns its ill posedness: the model is not hyperbolic; in one dimension the system has
complex characteristic eigenvalues, see e.g. Gidaspow et al. (1973). For a linear system,
this would indicate ill posedness of the Cauchy problem, whose solutions would not depend
continuously on the initial data for arbitrarily high wavenumber, as discussed in Lax (1957).
For nonlinear systems of the same type as the single-pressure inviscid model, complex
characteristic eigenvalues indicate nonexistence of a bounded integral of the solution, as
shown in Lax (1980).

The problem of ill posedness has been avoided in practice by introducing either viscous
dissipation as in Arai (1980) and Stewart (1979), or additional pressures arising from surface
tension as in Ramshaw & Trapp (1978), bubble inertia as in Bedford & Drumbheller (1978),
or other interfacial pressure jumps determined phenomenologically, see e.g. Ransom &
Hicks (1984). Additional models and methods in two-phase flow are reviewed in Stewart
& Wendroff (1984).

Despite the recent progress mentioned above, the theoretical situation concerning ill
posedness of the basic nondissipative model is still unsatisfactory and its mathematical
structure needs clarification. In this paper, we provide a Hamiltonian formalism for the
basic single-pressure model and analyze within this context how Lyapunov stability is
prevented, in comparison with single-species compressible fluids and multispecies, multi-
pressure models.

Multiphase barotropic and adiabatic flows of uncharged materials at a single, common
pressure are considered in sections 2 and 3, respectively. These standard theories are extended
to a multiphase plasma of charged interpenetrating materials in section 4. In each case, we
present a Hamiltonian formulation and identify conservation laws associated with existence
of a nontrivial kernel of the corresponding Poisson bracket.
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668 ' D HOLM and B A KUPERSHMIDT

For single-phase flows (Holm et a/. 1983) and for charged muitifluid flows with multiple
pressures (Holm 1984; Holm ez al. 1985), the Hamiltonian formulation leads to sufficient
criteria for Lyapunov stability in the neighborhood of steady solutions. However, because
multiphase flows take place at a single, common pressure, the implicit dependence of the
pressure on the entire set of macroscopic densities prevents the establishment of even
linearized Lyapunov stability, as is illustrated in section 5 for multiphase barotropic flow
n two dimensions. This result is consistent with the ill posedness of the multiphase equations
in one dimension and its consequent sensitive dependence to high wavenumber perturbations
1n initial conditions discussed in Lax (1957: 1980), Ransom & Hicks (1984), and Stewart
& Wendroff (1984).

Thus, the Hamiltonian procedure of stability analysis provides a framework 11 which
it becomes clear that stability 1s prevented by the constraint of a common pressure for each
phase. This Hamiltonian formulation also provides a useful springboard for amendments
and generalizations. In the companion paper (Holm & Kupershmidt 1986) we extend the
Hamiltonian formulation presented here for the standard model to derive a new, well-posed
hyperbolic multiphase model whose steady equilibria are Lyapunov stable under certain
conditions.

2 MULTIPHASE BAROTROPIC HYDRODYNAMICS

A local description of ideal, barotropic, multiphase flow is given in terms of the following

variables as functions of space coordinates x with components x,, i = 1, 2, -, n and
time ¢:
9 the volume fraction of material s in a unit volume; s = 1, 2, «, N,
?:1 6 =1
pe the microscopic density of material s.
[ the macroscopic density of material s; p* = p*6* (no sum).
v’ the velocity of matenal s.

v

the pressure within matenal s, which is taken to be the same for all materals;

P: = P for all 5, n the standard, single-pressure theories.

e’ the internal energy per unit mass of material 5s; e* = e*(p*) is the equation of
state, so that p* = p*(P) and de* = (P/(p*)?)dp* for the barotropic, single-
pressure case

The N constraints

A

E 0 =1, P(p) =P foralls = 1,2, =, N

impose implicit dependences

P = P((p°}), 6° = 6:({p*]),

since p* = p*(P) = %;, where p*(P) can be considered as given functions. As an illustration,

consider the case of two species, s = 1, 2. Then, with 6! = 0, 62 = 1 - 6,

5l — 1 2 — _ — _ pl
p ! = 6pi(P), p? = (1-0)pxP) = (1 p‘(P))P2 P),

which implies that P = P(p', p?) = P({p*}), and likewise, 8* = 6°({ p*}). Consequently,
we consider P, 6* to be given functions of { p*}.
An interesting thermodynamic consequence of this dependence P({ p*}) of the single
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pressure on the entire set of macroscopic densities is the “macroscopic sound speed” relation

P P/p*(P)

Z" 2 = = — ,
) ap* YgpPael/oP

(1]

which follows from substitution of the relation p* = p*/0< into the thermodynamic first
law, de* = (P/(p*)*)dp*. Thus,

des P 51 _ P 20+
aBu pxﬁs 6: aﬁa ’
which leads to formula [1] via
- P
2 2p"e"=e“+—, (2]
ap® 8 P

upon using Zz0# = 1. Relations [1] and {2] will be found useful for casting the ideal
multiphase equations into a Hamiltonian form and studying their stability properties.
The equations of ideal multiphase flow are (see e.g. Stewart & Wendroff 1984)

2,p* + divpsv: =0, (3]

6
9,u7 + U}U',:I - EP,I - ¢.l ’ [4]

where summation on repeated subscripts is implied (no summation convention is imposed
on superscript s) and ¢(x) is the potential for an external body force. Equation [3] expresses
conservation of mass, while [4] determines the motion for each species with drag terms
between constituents neglected. Using [3], an alternative form of the motion [4] is obtained:

a(pv) + (pwww), = -6°P, - psd,,
so that, in terms of the species momentum density M* = p°v*, we have

MM _
ale + P g = _0:})" - ps¢.l' [5]

Energy conservation is a consequence of [3] and [4]. Namely,

—(1 _ 6P 6:
a,|:p’(§|v’|2 + e + 4)):| = - div (p’v{% v+ et + & + o ]) y o

at

Consequently, upon summation on s and use of 2, ¢ = 1, the following quantity is seen
to be conserved for species velocities v, tangential to the boundaries of the domain of flow,

E = 2 Iﬁ’(%h’l’ +e + cb)d"x, [6]

where d”x is the n-dimensional volume element. Throughout, the dimension of the volume
element indicates which results are general, and which only apply in certain dimensions.
The total energy of the system is conserved, provided the velocities v* are tangent to the
boundary. Likewise, summation over species of the momentum equations [5] implies con-
servation of those components of the total linear momentum which correspond to directions
in which ¢ is translation invariant.
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Another consequence of [3] and [4] 1s advection of each component of the specific
vorticity @*/p* = (curl v*) (p*) ™' for each species. Using the relation p* = p*(P). one
finds from [4] that, with @°* = curl v,

1
IV =V X @ - (5 Vs> + As(P) + 4’)» (7]
where #°(P) is the specific enthalpy, satisfying
Th*(P) = (P) VP.

Thus, by taking the curl of [7], we get
2,0° = curl(v’ X o), (8]

or, upon using [3] and expanding [8] one finds
(@, + v’-v)% = (3) MW - )V [9]

Equation [8] as written 1s true for a barotropic fluid in three dimensions. In n dimensions,
the corresponding statement 1s that the 2-forms dv* = d(vidx') = v ,,dx/ ~dx’ are “frozen
in”, i.e. (3, + v )dv’ = 0, where .#v* means Lie derivative with respect to the vector
field v in standard notation, see e.g. Schutz (1980). In terms of components, @’ = v’
v,,» we find that i

1
(@3, + Lvi)dvs = E[a' o}, + (o), - w43, - w43 Jvildradx' = 0, [10]

which becomes [8] upon identifying -w;, = w;, etc. in three dimensions.

Hamiltonian formalism. The main result of this section is that the equations of
multiphase dynamics [3] and [5] can be written in the Hamiltonian form 3, F = {H F}
with Poisson bracket { , | given for arbitrary functionals J, X of p*, M* by

- 8K &J | - 8K
{KJ} = zfdx 55" a,p’ 8M’+ BM,’[p 85 + SMH’ [11]
and Hamiltonian H[p*, M*] given by

o= zjdnx[

which, of course, is the total energy [6].
This Hamiltonian formulation can be verified directly, by using the variational deriv-
atives

pe +p ¢] [12]

1 P
—_— S, == =—5|v‘|2+e‘+;+¢,

where we have used relation [2]. We find, letting J = p*, K = H in [11], that [3] 1s
verified;

0B = [Hp| = ~3,(p).
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Letting J = M}, K = H in [11], we find that [5] is verified as well;
- _ P -
o M: = {HM:} = -(Mw), - p°d, - p‘a,(e‘+;) = - M), -p'¢,-0:P,,

thanks to the first law des = -Pd(1/p*).

The bracket [11] is a sum over species of N copies of the Poisson bracket for single-
species, compressible flow which is given together with its mathematical interpretation in
Holm & Kupershmidt (1983) and was introduced in Iwinski & Turski (1976), Dzyaloshinsky
& Volovik (1980), and Morrison & Greene (1980). Thus, the Poisson bracket [11] for ideal
barotropic multiphase flow has the same form as the Poisson bracket for single-phase flow,
when expressed in terms of the macroscopic mass densities p° and momentum densities
M: = pive.

3 MULTIPHASE ADIABATIC HYDRODYNAMICS

For multiphase adiabatic flow, each specific internal energy e* depends on both
microscopic mass density p* and specific entropy 7 through the equation of state e* =
e*(p*,m°). In this case, the first law becomes

det = Tedm® - Pd(#), [13]

where T* is the temperature of species s. The constraints 3.6° = 1 and P*(p*,m*) = P,
s = 1, -, N, impose functional dependences

P =P({p*}L{n*}, 6 =6([p}, (n°]), [14]

for given functional relations p° = p*(P, n*) = p*/0+. The expressions [14] for P, 6°* are
assumed to be known. As a consequence of [14], one finds from [13] that

s P 0: s s
o =% Pab 3¢l _ pige L2397 [15]
ape pipt piape am* p’oame

These expressions lead to the thermodynamic identities,

3 - P
= 2 ple’f =e* + —,
apd B pu

[16]

d - -
anaz;,pe_pT, [17]

upon using X,0¢ = 1. Identities {16] and [17] will be useful for extending the Hamiltonian
formulation obtained in the previous section to the case of adiabatic flow. For multiphase
adiabatic flow, the equations of motion are

3,p* + divpsv =0, [18a]

am +v.-yYn' =0, [18b]
M M; —

3, M? + (+1), = 0P, -5, [18¢]

where the adiabatic condition requires that specific entropy 7* advects with the flow of
each species. (Note that those flows are not isentropic, i.e. not constant entropy; rather
they are adiabatic, i.e. no heat is exchanged across flow lines.)
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A consequence of these equations analogous to [9] 1s, in three dimensions,
(ax +V"'v)ﬂ‘ - 3 ‘19!
where )¢, given by
s = (5:)“1«,: ,V.n: , [ZOJ

1s the potential vorticity for material s which is transported by the flow of that species
Conserved quantities associated with 7° and ()° are

Fy = f d’x p* d:(n%, Q°), [21]

for arbitrary functions @+ of two real variables for which the integrals F,, exist. Proof that
the quantities Fy. are conserved for velocities tangent to the boundary follows by direct
computation using [18a], [18b], and [19], and integrating by parts. In » dimensions, the
geometrical statement corresponding to [19] 1s that the 3-form dvsadn* = -v* Mhdx’ ~ dx
~ dx* 1s frozen into the flow of material s, i.e. (3, + £v*) (dv*~dn*) = 0, where v’ s
the Lie derivative and ~ denotes exterior product of differential forms. Formulation of [19]
mn terms of Lie derivatives shows its geometrical meaning. The proof follows by taking the
exterior derivative of the motion equation written as

3 1 5|2
(a, + Lv)v* +;dP+d(¢—%)=0,

where v* = vidx'. Upon using [d, .£'v*] = O and d? = 0 (see e.g. Schutz 1980), the resuit
of the exterior denvative 1s

1
(6, + Lvi)dv* = dPAd(;).

Then the adiabatic equations (3, + £ v*)n° = 0 imply that
1
(3, + v )dviadn®) = dPad(F)/dn’ =0, [22]

where the last equality 1s a consequence of the functional relation ps = p*(P, n*). In three
dimensions [22] becomes

3.7 n* ) + div [v(0*yn)] =0,

and [19] follows upon combining this with the continuity equation for p*.

Hamiltonian formalism. Equations [18] of adiabatic multiphase hydrodynamics can
be expressed in Hamiltonian form ¢, F = {H,F}, with Poisson bracket given on the space
of dynamical variables { p’,n*,M*} by

{KJ} = -2 _f drx

o/ [~ 8K 8K 5K
s [p "5 Mg T (an' - Mfa') SM;”

and Hamiltonian H = X H*,

LU SRRV 4
sp: P SM: o n"aM; (23]

H=2 [ an [";‘BT + prestprn) + N} . (231
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The proof proceeds as in section 1 by substituting into the Poisson bracket [23] the variational
derivatives

oH
SM:

SH
5p*
SH
on*

=V’,

1 P
= -zjvP+e +—+ ¢,
2 P’

—_ E:Ts R

obtainable using the thermodynamic relations [16] and [17].

The conserved quantities [21] lie in the kernel of the Poisson bracket [23] in three
dimensions (that is, they Poisson commute with every functional of the variables { p*,n4M?})
so they will be conserved for any choice of Hamiltonian. See Holm & Kupershmidt (1983),
for a mathematical interpretation of the Poisson bracket [23].

4 ADIABATIC MULTIPHASE ELECTROHYDRODYNAMICS

Adiabatic multiphase flow of ideal charged fluids creates a current. This current induces
an electromagnetic field, which self-consistently influences the fluid motion through the
Lorentz force. In this section, we will show how the self-consistent inclusion of an electro-
magnetic field alters the Hamiltonian structure for electrically charged adiabatic multiphase
flows. Let a* be the charge-to-mass ratio for material s, E, the electric field, and 4, the
magnetic vector potential, related to the magnetic field tensor B, by

B, =4, -A,.

The coupled electromagnetic and fluid equations consist of: dynamical Maxwell equations
for the electromagnetic fields, conservation laws for mass and entropy of each species, and
the motion equations for the fluid velocities. The sources for the electromagnetic fields are
determined by the products of the parameters a* (which could be zero for some species)
with the macroscopic mass densities p*. The multiphase plasma (MPP) equations are, upon
choosing the radiation gauge (3,A = -E),

3,E, = -By, - E a*pi,

s

3,A, = -E,,
a,pt = —(pwd,, [24]
3 = —UiNy

1
IVi = —vivi; - ;P,, + a*(viB, + E) .

These equations are obtained by introducing the multicomponent, single-pressure approx-
imations into the standard plasma physics model, discussed e.g. in Holm & Kupershmidt
(1983).

The static Maxwell source equation

E, =2 a‘p’

is compatible with the flow and will remain satisfied if it is initially true. Just as in adiabatic
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multiphase hydrodynamics, the constraints 2,0 = 1 and P*(p*,m*) = P for all s impose

a known (implicit) dependence

P =P p} (ne)), 00 =6:([p], [n*]

for given functional relations
ps — ps(P, n:) _—

among the microscopic densities p*, macroscopic densities p°, and volume fractions 6°.

Hamiltonian formalism. Setting M* = p°v* + a*p°A, the MPP equations [24] can be
cast into Hamiltonian form 3, F = [H,F}, with Poisson bracket given on the space of
dynamical variables { p*, n°, M+, E, A} by

-{KJ} = Efd"x

8 |-, 8K 8K - o 8K
+ —= ="M M+ M3,) —
M [P spr o ’ 8M;“ (23]

N fdnx(s./ 8Kk 8K 51)
84,8E, 64,8E,’

-, &K oJ 8K

—_— 5

5o -+ =
o P st " om ™ sare

and Hamiltonian
Ms - :A 2
H = zfd" (l_____fP_l+ pres(p* 'n‘)) fd"x( EP+ - B,,B) [26]

The variational derivatives

P
—_— = —a’Aw + e’ + ;,

E:TIV

i —2 a‘pvi - B,,

—=E,l

readily imply the MPP equations [24] using [25] and [26].
Next, an invertible change of variables

=M:-apd, = pv;

in the Poisson bracket [25], followed by noticing that the resulting bracket involves 4, only
in the combination 4,, - 4,, = B,, leads to a gauge-invariant Poisson bracket in the
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space of magnetic fields plus physical variables

- {KJ} = Efdnx

8K & oK sj[ 8K 8K

55 P 5ut T o ton:| P 5 My
- 6K & _ O6H
+(3M+Ma)3M,+“P 762:—+ap "BM‘]HS_ET,‘JPSM{‘ [27])

5B,\"5E, “ 5E)" SE, ' 8B,|

Except for the presence of the macroscopic density p* instead of the microscopic density
p’, the brackets [25] and [27] have the same form as those in Holm & Kupershmidt (1983)
for the physically very different system of multifluid plasmas interacting via electromagnetic
fields and multiple pressures, without imposing the constraint of pressure equilibration. For
those multifluid plasmas, the bracket [27] in R*® was found in Iwinski & Turski (1976) and
rediscovered in Kaufman & Spencer (1982).

To determine additional conservation laws for the MPP system, we first define a
1-form ¢ = (v° + a*4,)dx'. Then by the MPP equations [24] one finds

5|2
o1 2o+ Lar-dEE s wva) <o,

where .Zv: is the Lie derivative with respect to v*. In addition, since (3, + Zv*)dn’ = 0,
we obtain, by proceeding as in section 3,

@, + Lv)dG:a dn®) = d.PAd(P )adn =0,

using p* = p*(P, m*) in the last equality. Thus, in three dimensions we have a plasma
analog of [19] for adiabatic fluids;

(a,+v’-v)é’=0,

where

Qs — (-‘;s)-l ((l)’ + asB) AvAN

for each species, and B = curl A is the magnetic field vector.
Associated conserved quantities are

FQ,, = J‘ dx f—)’ q"(’n:) és) , [28]

for arbitrary functions ¢ of two variables. Again, the conserved quantities [28] associated
with advection of Q* and 7* lie in the kernel of either Poisson bracket [25] or [27]; so they
will be conserved for any choice of Hamiltonian in these dynamical variables.

5. LYAPUNOYV STABILITY ANALYSIS FOR THE SINGLE-PRESSURE MODEL

As will be shown below, equilibrium (i.e. steady-state flows) of the multiphase equations
[18] are extremal points of the sum H; = H + Z,F,. defined by [21] and [23']. Lyapunov
stability of these equilibrium states can be investigated by studying the conditions for
definiteness of 62H , the second variation of H; evaluated at the equilibrium state. The
quantity 8§2H is preserved by the linearized equations, and is the Hamiltonian for the
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dynamics hineanzed around the equilibrium state (see Arbarbanel et a/ 1986, appendix C)
When the equilibrium state satisfies conditions sufficient for this second vanation to be
definite in sign, then the quantity 62H  defines a conserved norm, 1n terms of which the
Iineanzed equations will be Lyapunov stable (that is, when the equilibrium state satisfies
the conditions required to make §2H ; definite 1n sign, then 1n terms of the conserved norm
OH,, every perturbed state remains i some neighborhood of equilibrum under the Ii-
nearized dynamics). More detailed discussions of how fluid dynamical stability results are
obtainable by Lyapunov’s method in the context of the Hamultonian formalism appear 1n,
e.g. Arnold (1965; 1969), Holm er al. (1983), Holm (1984), Holm er a/ (1985). and
Abarbanel et a/. (1984, 1986)

Here we show that dependence of the common pressure P on the entire set of macro-
scopic densities { p*{ causes the second variation 82H ; to be indefinite in sign and, thus,
prevents lineanized Lyapunov stability from being establishable in the vicimity of the sta-
tionary flows that are equilibrium states of H . This result 1s consistent with the 11l posedness
of the single-pressure multiphase equations tn one dimension, as discussed in Stewart &
Wendroff (1984) and references therem.

For ssmphcity, we consider two-dimensional, barotropic, multiphase flow 1n the x—y
plane. Calculations which are more complicated, but completely analogous to those to be
tllustrated are also possible for the other multiphase flows considered in this paper. For
equilibrium planar barotropic flows p, v’, we have

divpivi=0, [29]
wj
e :5 =0 ’ 30
v V(Pi) [30a]
A V(%(rvel2 + h:(P,) + ¢) =0, [30b]

with w! = Z-curl v, where Z 1s the umit vector normal to the plane. The relation [30b]
follows, upon scalar multiplication by v:, from the equilibrium relation

Vi X 2wl = v(%iv:l2 + m(P,) + ¢)- (31]

For both sets of relations [30a] and [30b] to hold in the plane, it suffices that there exist
functions K* for which

512 s
V) + b = K(%’)

5 : [32]

provided v} and ] are nonzero throughout the domain of flow considered. Then, taking
the vector product of [31] with Z using [32] leads to

- K'*(w3/ pY . (w:)
Y = ———— =1, 33

where prime 1n K'¢ refers to the derivative of K*(w!/p:) with respect to the indicated
argument. If, further (7 (w/p?) vanishes nowhere in the domain considered, then one easily
sees that

K*(wi/p:)  pivi-2 X Vwil pi
w/pr  Vedpilr

(34]

upon scalar multiplying [33] by the quantity 2 X (w:/p).
We now show that the first variation

8H, = 2 DH ((ps,vs) - (8p*, 8v*) [35]
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vanishes for equilibnum flows p:, v:, taking place in a domain D of the x—y plane with
boundary conditions v¢-i = 0, where fi is the unit vector normal to the boundary aD.
From [21] and [23'] we have

1_ _ _ _ 5
Hp = 2 L dxdy [5 pIv 2 + pre(p?) + p'd + p’cps(%)]
+ Z As fo dxdy o, [36]

where A* is a constant multiplying a term separated from ®* for convenience later in [39].
Using [2] and integrating by parts in [36] gives the expression

1 P s -
SH, = X L dxdy [(ileIZ te St b+ % <I>")8p’ [37]
—_ w? ®*
- fgno)o]
p =)t x v =

2 [xs + 4>(§’—” sv -dl.
s aD P

The first variation 8H thus vanishes for equilibrium flows, provided the functions ¢
satisfy the relations needed for each coefficient in [37] to vanish,

1 w? w?’ ) — o w?
—vi? + h‘(Pe) -+ = - CI)’(‘_—e) -+ ::EQ"(_—'), svs = Plis ('5)2 X (__—e) 38
2 ¢ py b e P > V) B
in the interior of domain D, and
A+ ¢':(%’—f) =0 [39]

on the boundary aD. The latter condition [39] is easily satisfied, since w}/ p: is a constant

on the boundary by [30] and the boundary condition vii = 0. For both conditions in
[38] to be satisfied, it suffices that

K(‘i’—) = - q>x(-‘l‘—') + = qrs(-fif) , [40]
pe P’ pe P’
so that the first relation in [38] holds. As a consequence, then
s 3 5
K(‘l’—) =2 qw:(g!) , [41]
p: pe Pe

and the second relation in {38] is satisfied by virtue of [33] for steady flows. Therefore, H 7
in [36] has a critical point for stationary flows, where the function ®* is determined by
[40] to be

) ngr) dr + const) . [42]

P:(g) = q( .

The second variation of H; evaluated at equilibrium,

82H; = D*H (p:, v3) - (5p*, 6v*)?, [43]
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1S given by

‘

s, — 2 | dxdy)ﬁzlﬁ"‘ + %‘555"2 e (%)(8(%—))

€

1 _ _ 52 _
+ 0.5 Dope - '—%’— 57|  [44]

If this expression could be made positive definite, the resulting conclusion would be that
the linearized equations at equilibrium p:, v{ were Lyapunov stable in the preserved norm
82H ;. In the single-species case, this would require (cf. Holm et a/. 1983)

qy'(wf) _ P ZX Vao.lp. 0

P vV (w./p)?

which is a compressible version of Rayleigh’s mnflection point criterion for stability (see e.g.
Drazin & Reid 1981), and the condition

1{dP
—[ ‘- w} >0, [45]
pLdp.

which 1s the condition that the equilibrium flow be everywhere subsonic. However, for a
multiphase flow one finds (cf. [1])

.
5P, = E (Ce)2 8p*, [46]
B=1

since the equilibrium pressure 1s a function of the entire set of macroscopic densities.
Therefore, although 62H » 1s preserved by the linearized equations for multiphase flows, 1ts
preservation does not mmply Lyapunov stability even for planar flows without inflection
points, since 62H  1s not definite in sign for such multiphase flows. The cause of this
indefiniteness 1s the dependence of the common pressure at equilibrium P, on the entire
set of macroscopic densities { p*}. Thus, the constraint of common, instantaneously equi-
librated pressures causes a difficulty, which we believe is unphysical (some equilibria must
be stable!). This difficulty can be circumvented and Lyapunov stability obtained by for-
mulating a very different multipressure theory of multiphase flows, as is discussed 1n the
companion paper (Holm & Kupershmidt 1986).

6 CONCLUSION

We have presented Poisson brackets for multiphase hydrodynamics and electrohydro-
dynamics of 1deal fluids and plasmas. In terms of macroscopic mass densities and momentum
densities, these Poisson brackets have the same form, and retain the same mathematical
structure as for the corresponding single-phase fluids. The kernels of these Poisson brackets
give conservation laws that are independent of the choice of Hamiltonian for a particular
theory. Equilibrium multiphase flows have been shown to be critical points of H, the
energy constrained by these additional conservation laws. Linearized Lyapunov stability
analyses of multiphase fluids have been given within the Hamiltonian context Although
the second vanation §2H; of the constrained energy H, is preserved by the lineanzed
multiphase equations, no corresponding stability result can be concluded for the single-
pressure multiphase case, since the dependence there of the pressure on all of the macroscopic
densities causes 62H ; to be indefinite in sign and, thus, not a stability norm. This difficulty
can be resolved within the Hamiltonian framework by introducing multiple pressures, as
1s discussed in the companion paper (Holm & Kupershmidt 1986).
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